Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
Emerg Microbes Infect ; 13(1): 2337671, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38551320

RESUMO

Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.


Assuntos
Doenças do Gato , Doenças do Cão , Vírus da Hepatite E , Hepatite E , Animais , Gatos , Cães , Humanos , Ratos , Vírus da Hepatite E/genética , Hong Kong , Animais Selvagens , Animais de Estimação , Imunoglobulina G
3.
Artigo em Inglês | MEDLINE | ID: mdl-38490433

RESUMO

Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.


Assuntos
Doenças Autoimunes , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/psicologia , Depressão , Sistema Imunitário , Homeostase
4.
Nat Immunol ; 25(3): 525-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356061

RESUMO

Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.


Assuntos
Doenças Autoimunes , Humanos , Citocinas , Epigenômica , Histona Desmetilases , Homeostase , Oxirredutases N-Desmetilantes , Histona Desmetilases com o Domínio Jumonji/genética
5.
Mol Neurobiol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329680

RESUMO

Cognitive dysfunction was a common symptom of major depressive disorder (MDD). In previous studies, psychological stress leads to activation and proliferation of microglial cells in different brain regions. Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. To demonstrate the role of quercetin in the hippocampal inflammatory response in depress mice. The chronic unpredictable stress (CUS) depressive mice model built is used to explore the protective effects of quercetin on depression. Neurobehavioral test, protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and heat shock protein 90 (HSP90), and cytokines (IL-6, IL-1ß, MCP-1, and TNF-α) were assessed. Quercetin ameliorated depressive-like behavior and cognitive impairment, and quercetin attenuates neuroinflammation and by targeting HSP90 to inhibit NLRP3 inflammasome activation. Quercetin inhibited the increase of HSP90 levels in the hippocampus and reverses inflammation-induced cognitive impairment. Besides, quercetin inhibited the increased level of cytokines (IL-6, IL-1ß, MCP-1, and TNF-α) in the hippocampus of the depressive model mouse and the increased level of cytokines (IL-6, IL-1ß, and MCP-1) in microglia. The current study indicated that quercetin mitigated depressive-like behavior and by targeting HSP90 to inhibit NLRP3 inflammasome activation in microglia and depressive mice model, meanwhile ameliorated cognitive impairment in depression. Quercetin has huge potential for the novel pharmacological efficacy of antidepressant therapy.

6.
Life Sci ; 339: 122417, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244915

RESUMO

The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.


Assuntos
Adenosina/análogos & derivados , 60489 , Neoplasias , Humanos , Neovascularização Patológica/patologia , Neoplasias/tratamento farmacológico
7.
J Clin Microbiol ; 61(12): e0071023, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38038482

RESUMO

The emergence of Rocahepevirus ratti [species HEV ratti (r HEV)] as a causative agent of hepatitis E in humans presents a new potential threat to global public health. The R. ratti genotype 1 (r-1 HEV) variant only shares 50%-60% genomic identity with Paslahepevirus balayani [species HEV balayani (b HEV)] variants, which are the main causes of hepatitis E infection in humans. Here, we report antigen diagnoses for r-1 HEV and b HEV using an enzymatic immunoassay (EIA) method. We detected recombinant virus-like particles protein (HEV 239) of r HEV and b HEV using a collection of hepatitis E virus (HEV)-specific monoclonal antibodies. Two optimal candidates, the capture antibody P#1-H4 and the detection antibodies C145 (P#1-H4*/C145#) and C158 (P#1-H4*/C158#), were selected to detect antigen in infected rat samples and r-1 HEV- or b HEV-infected human clinical samples. The two candidates showed similar diagnostic efficacy to the Wantai HEV antigen kit in b HEV-infected clinical samples. Genomic divergence resulted in low diagnostic efficacy of the Wantai HEV antigen kit (0%, 0 of 10) for detecting r-1 HEV infection. Compared with the P#1-H4*/C145# candidate (80%, 8 of 10), the P#1-H4*/C158# candidate had excellent diagnostic efficacy in r-1 HEV-infected clinical samples (100%, 10 of 10). The two candidates bind to a discrete antigenic site that is highly conserved across r HEV and b HEV. P#1-H4*/C145# and P#1-H4*/C158# are efficacious candidate antibody combinations for rat HEV antigen detection.


Assuntos
Vírus da Hepatite E , Hepatite E , Ratos , Humanos , Animais , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Técnicas Imunoenzimáticas , Testes Imunológicos
8.
JHEP Rep ; 5(9): 100793, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575885

RESUMO

Background & Aims: Rat hepatitis E virus (Rocahepevirus ratti; HEV-C1) is an emerging cause of hepatitis E that is divergent from conventional human-infecting HEV variants (Paslahepevirus balayani; HEV-A). Validated serological assays for HEV-C1 are lacking. We aimed to develop a parallel enzymatic immunoassay (EIA) system that identifies individuals with HEV-C1 exposure. We also aimed to conduct the first HEV-C1 seroprevalence study in humans using this validated EIA system. Methods: Expressed HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) peptides were characterised. Blood samples were simultaneously tested in HEV-A4 p239 and HEV-C1 p241 IgG EIAs. An optical density (OD) cut-off-based interpretation algorithm for identifying samples seropositive for HEV-A or HEV-C1 was validated using RT-PCR-positive infection sera. This algorithm was used to measure HEV-C1 seroprevalence in 599 solid organ transplant recipients and 599 age-matched immunocompetent individuals. Results: Both peptides formed virus-like particles. When run in HEV-A4 p239 and HEV-C1 p241 EIAs, HEV-A and HEV-C1 RT-PCR-positive samples formed distinct clusters with minimal overlap in a two-dimensional plot of optical density values. The final EIA interpretation algorithm showed high agreement with RT-PCR results (Cohen's κ = 0.959) and was able to differentiate HEV-A and HEV-C1 infection sera with an accuracy of 94.2% (95% CI: 85.8-98.4%). HEV-C1 IgG seroprevalence was 7/599 (1.2%) among solid organ transplant recipients and 4/599 (0.7%) among immunocompetent individuals. Five of 11 (45.5%) of these patients had history of transient hepatitis of unknown cause. Conclusions: HEV-C1 exposure was identified in 11/1198 (0.92%) individuals in Hong Kong indicating endemic exposure. This is the first estimate of HEV-C1 seroprevalence in humans. The parallel IgG EIA algorithm is a valuable tool for investigating epidemiology and risk factors for HEV-C1 infection. Impact and Implications: Rat hepatitis E virus has recently been discovered to infect humans, but antibody tests for this infection are lacking, making it difficult to gauge how common this infection is. We developed an antibody test algorithm that can identify individuals with past rat hepatitis E virus exposure. We used this algorithm to estimate rat hepatitis E exposure rates in humans in Hong Kong and found that approximately 1% of all tested people had been exposed to this virus previously.

9.
Cell Signal ; 111: 110869, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633478

RESUMO

OBJECTIVE: The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS). METHODS: Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays. Western blot and qRT-PCR were conducted to analyze the protein and mRNA expression. Moreover, the correlation between MSI2, Fbxo6, Rnaset2, and chemokine signaling was predicted and verified using RNAct database, KEGG, wiki, RNA-binding protein immunoprecipitation and co-immunoprecipitation. Moreover, H&E and Oil Red O staining were employed for assessing necrotic core and lipid accumulation in AS mouse aorta tissues. The numbers of B lymphocytes and monocytes, and the levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDL-C) in AS mice blood were investigated using flow cytometry and corresponding commercial kits, respectively. RESULTS: MSI2 was up-regulated in the PDGF-BB-treated VSMCs. Knockdown of MSI2 inhibited VSMC proliferation, cell-cycle, and migration. Moreover, MSI2 regulated VSMC phenotypic switch through binding with Fbxo6 to induce Rnaset2 ubiquitination. MSI2 knockdown inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. In AS mice, knockdown of MSI2 inhibited the formation of necrotic core and atherosclerotic plaque, and inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. CONCLUSION: Our findings demonstrated that MSI2 could bind with Fbxo6 to induce Rnaset2 ubiquitination and the activation of chemokine signaling pathway during VSMC phenotypic switch in AS.


Assuntos
Aterosclerose , Músculo Liso Vascular , Animais , Camundongos , Aterosclerose/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocinas/metabolismo , Colesterol/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais
10.
J Cancer Res Clin Oncol ; 149(12): 10715-10726, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37308747

RESUMO

PURPOSE: Lymphocyte-monocyte ratio (LMR) has previously been used as a prognostic predictor in various solid tumors. This research aims in comparing the prognostic predictive Please check and conability of several inflammatory parameters and clinical parameters to validate further the excellent prognostic value of LMR in patients with gastric cancer treated with apatinib. METHODS: Monitor inflammatory, nutritional parameters and tumor markers. Cutoff values of the parameters concerned were identified with the X-tile program. Subgroup analysis was made via Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to find independent prognostic factors. The nomogram of logistic regression models was constructed according to the results. RESULTS: A total of 192 patients (115 divided into training group and 77 into validation group) who received the second- or later-line regimen of apatinib were retrospectively analyzed. The optimal cutoff value for LMR was 1.33. Patients with high LMR (LMR-H) were significantly longer than those with low LMR (LMR-L) in progression-free survival (median 121.0 days vs. median 44.5 days, P < 0.001). The predictive value of LMR was generally uniform across subgroups. Meanwhile, LMR and CA19-9 were the only hematological parameters with significant prognostic value in multivariate analysis. The area under the LMR curve (0.60) was greatest for all inflammatory indices. Adding LMR to the base model significantly enhanced the predictive power of the 6-month probability of disease progression (PD). The LMR-based nomogram showed good predictive power and discrimination in external validation. CONCLUSION: LMR is a simple but effective predictor of prognosis for patients treated with apatinib.


Assuntos
Monócitos , Neoplasias Gástricas , Humanos , Monócitos/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Linfócitos/patologia
11.
Microbiol Spectr ; 11(3): e0349522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067438

RESUMO

Rarely has the vast diversity of bacteria on Earth been profiled, particularly on inaccessible plateaus. These uncultured microbes, which are also known as "microbial dark matter," may play crucial roles in maintaining the ecosystem and are linked to human health, regarding pathogenicity and prebioticity. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is a keystone species in the maintenance of ecological balance. We used a combination of full-length 16S rRNA amplicon sequencing, shotgun metagenomics, and metabolomics to elucidate the species-level community structure and the metabolic potential of the gut microbiota of the plateau pika. Using a full-length 16S rRNA metataxonomic approach, we clustered 618 (166 ± 35 per sample) operational phylogenetic units (OPUs) from 105 plateau pika samples and assigned them to 215 known species, 226 potentially new species, and 177 higher hierarchical taxa. Notably, 39 abundant OPUs (over 60% total relative abundance) are found in over 90% of the samples, thereby representing a "core microbiota." They are all classified as novel microbial lineages, from the class to the species level. Using metagenomic reads, we independently assembled and binned 109 high-quality, species-level genome bins (SGBs). Then, a precise taxonomic assignment was performed to clarify the phylogenetic consistency of the SGBs and the 16S rRNA amplicons. Thus, the majority of the core microbes possess their genomes. SGBs belonging to the genus Treponema, the families Muribaculaceae, Lachnospiraceae, and Oscillospiraceae, and the order Eubacteriales are abundant in the metagenomic samples. In addition, multiple CAZymes are detected in these SGBs, indicating their efficient utilization of plant biomass. As the most widely connected metabolite with the core microbiota, tryptophan may relate to host environmental adaptation. Our investigation allows for a greater comprehension of the composition and functional capacity of the gut microbiota of the plateau pika. IMPORTANCE The great majority of microbial species remain uncultured, severely limiting their taxonomic characterization and biological understanding. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is considered to be the keystone species in the maintenance of ecological stability. We comprehensively investigated the gut microbiota of the plateau pika via a multiomics endeavor. Combining full-length 16S rRNA metataxonomics, shotgun metagenomics, and metabolomics, we elucidated the species-level taxonomic assignment of the core uncultured intestinal microbiota of the plateau pika and revealed their correlation to host nutritional metabolism and adaptation. Our findings provide insights into the microbial diversity and biological significance of alpine animals.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Animais , Humanos , Ecossistema , RNA Ribossômico 16S/genética , Filogenia , Lagomorpha/genética , Lagomorpha/microbiologia
12.
JHEP Rep ; 4(10): 100546, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36052220

RESUMO

Background & Aims: HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods: In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results: A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions: We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary: Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans.

13.
RSC Adv ; 12(33): 21374-21384, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975082

RESUMO

Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs). Nevertheless, they still face great challenges in the design of the best electrode materials for applications. Herein, we have successfully synthesized nano-sized CoSe2 encapsulated by N-doped reduced graphene oxide (denoted as CoSe2@N-rGO) by a direct one-step hydrothermal method, including both orthorhombic and cubic CoSe2 phases. The CoSe2@N-rGO anodes exhibit a high reversible capacity of 599.3 mA h g-1 at 0.05 A g-1 in the initial cycle, and in particular, they also exhibit a cycling stability of 421 mA h g-1 after 100 cycles at 0.2 A g-1. Density functional theory (DFT) calculations show that CoSe2 with N-doped carbon can greatly accelerate electron transfer and enhance the rate performance. In addition, the intrinsic causes of the higher electrochemical performance of orthorhombic CoSe2 than that of cubic CoSe2 are also discussed.

14.
Nat Immunol ; 23(9): 1342-1354, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995859

RESUMO

Appropriate regulation of B cell differentiation into plasma cells is essential for humoral immunity while preventing antibody-mediated autoimmunity; however, the underlying mechanisms, especially those with pathological consequences, remain unclear. Here, we found that the expression of Jmjd1c, a member of JmjC domain histone demethylase, in B cells but not in other immune cells, protected mice from rheumatoid arthritis (RA). In humans with RA, JMJD1C expression levels in B cells were negatively associated with plasma cell frequency and disease severity. Mechanistically, Jmjd1c demethylated STAT3, rather than histone substrate, to restrain plasma cell differentiation. STAT3 Lys140 hypermethylation caused by Jmjd1c deletion inhibited the interaction with phosphatase Ptpn6 and resulted in abnormally sustained STAT3 phosphorylation and activity, which in turn promoted plasma cell generation. Germinal center B cells devoid of Jmjd1c also acquired strikingly increased propensity to differentiate into plasma cells. STAT3 Lys140Arg point mutation completely abrogated the effect caused by Jmjd1c loss. Mice with Jmjd1c overexpression in B cells exhibited opposite phenotypes to Jmjd1c-deficient mice. Overall, our study revealed Jmjd1c as a critical regulator of plasma cell differentiation and RA and also highlighted the importance of demethylation modification for STAT3 in B cells.


Assuntos
Artrite Reumatoide , Histona Desmetilases com o Domínio Jumonji , Animais , Diferenciação Celular , Hematopoese , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
15.
Technol Cancer Res Treat ; 21: 15330338221112741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880288

RESUMO

Introduction: No effective peripheral blood predictors have been establoshed for first-line chemotherapy in patients with advanced gastric cancer. In this study, a nomogram combining the neutrophil-to-lymphocyte ratio/D-dimer with gender, number of metastases, and histological grade was established to predict progression-free survival in patients with unresectable advanced gastric cancer. Methods: We retrospectively collected baseline clinical characteristics and blood parameters from 153 patients diagnosed with advanced gastric cancer that underwent oxaliplatin-based first-line chemotherapy. Kaplan-Meier analysis and Cox regression analysis were used to determine the factors associated with progression-free survival. The concordance index (C-index) and calibration curve were used to determine the prediction accuracy and discriminative ability of the nomogram as a visual complement to the prognostic score system. Results: Determined by the X-tile software, the optimal cut-off points for the neutrophil-to-lymphocyte ratio and D-dimer were 3.18 and 0.56 mg/L, respectively. Multivariate analysis identified four independent prognostic factors: two or more metastatic organs (HR: 1.562, 95% CI: 1.009-2.418, P = .046), poor differentiation (HR: 0.308, 95% CI: 0.194-0.487, P < .001), neutrophil-to-lymphocyte ratio >3.18 (HR: 1.427, 95% CI: 1.024-1.989, P = .036), and D-dimer >0.56 mg/L (HR: 1.811, 95% CI: 1.183-2.773, P = .006). Receiver operating characteristic curves showed that the combination of the neutrophil-to-lymphocyte ratio and D-dimer in the prediction model exhibited the highest predictive performance (area under the curve, 0.800). The prognostic nomogram yielded a C-index of 0.800. Decision curve analysis demonstrated that the prognostic nomogram was clinically useful. A nomogram-based risk classification system was also constructed to facilitate risk stratification of advanced gastric cancer for optimal clinical management. Conclusion: We identified the neutrophil-to-lymphocyte ratio and D-dimer level as independent prognostic factors for advanced gastric cancer. The prognostic nomogram combining the neutrophil-to-lymphocyte ratio and D-dimer level can be applied in the individualized prediction of treatment outcome in patients with advanced gastric cancer.


Assuntos
Neutrófilos , Neoplasias Gástricas , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Linfócitos/patologia , Neutrófilos/patologia , Nomogramas , Oxaliplatina , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/patologia
16.
Viruses ; 14(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746725

RESUMO

Hepatitis E virus (HEV) infection in humans is primarily caused by genotypes within Paslahepevirus species balayani (HEV-A). Rocahepevirus species ratti (HEV-C1, otherwise known as rat HEV) can also infect humans. HEV grows poorly in cell culture. Recent studies have reported that hyper-confluent cell layers, amphotericin B, MgCl2, progesterone, and dimethyl sulfoxide (DMSO) increase HEV yield in vitro. Here, we describe an independent evaluation of the effectiveness of these modifications in improving the yield of HEV-A genotype 4 (HEV-A4) and HEV-C1 from clinical samples in PLC/PRF/5 cells. We found that amphotericin B, MgCl2, and DMSO increased HEV yield from high-viral-load patient stool samples, while progesterone was not effective. Yield of HEV-C1 was lower than HEV-A4 across all medium conditions, but was boosted by DMSO. HEV-A4 could be maintained for over 18 months in amphotericin B- and MgCl2-containing medium, with the demonstration of viral antigen in supernatants and infected cells. We also evaluated various protocols to remove pseudo-envelopes from cell culture-derived HEV. Treating cell culture supernatant with NP-40 was the most effective. Our findings identify key modifications that boost HEV growth in vitro and illustrate the importance of independent verification of such studies using diverse HEV variants and cell lines.


Assuntos
Vírus da Hepatite E , Hepatite E , Anfotericina B/farmacologia , Animais , Técnicas de Cultura de Células/métodos , Dimetil Sulfóxido , Humanos , Ratos
17.
Exp Neurol ; 355: 114144, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718207

RESUMO

As is the case with neurodegenerative diseases, abnormal accumulation of aggregated proteins in neurons and glial are also known to implicate in the pathogenesis of ischemic stroke. However, the potential role of protein aggregates in brain ischemia remains largely unknown. Fused in Sarcoma (FUS) protein has a vital role in RNA metabolism and regulating cellular homeostasis. FUS pathology has been demonstrated in the formation of toxic aggregates and critically affecting cell viability in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but whether this also applies to neurological injury following cerebral ischemia is unclear. Herein, we demonstrated a critical role of aggregated FUS in astrocyte activation caused by cerebral ischemia and a possible underlying molecular mechanism. Cerebral ischemic injury significantly induced the formation of cytoplasmic FUS aggregates in reactive astrocytes and injured neurons, thereby aggravating neurofunctional damages and worsening stroke outcomes. Further analysis revealed that extranuclear aggregation of FUS in astrocytes was involved in the induction of excessive autophagy, which contributes to autophagic cell injury or death. In conclusion, our results reveal the important contribution of FUS aggregates in promoting astrocyte activation in stroke pathology independent of its transcriptional regulation activity. We thus propose that aggregation of FUS is an important pathological process in ischemic stroke and targeting FUS aggregates might be of unique therapeutic value in the development of future treatment strategies for ischemic stroke.


Assuntos
Esclerose Amiotrófica Lateral , Isquemia Encefálica , AVC Isquêmico , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Esclerose Amiotrófica Lateral/patologia , Astrócitos/metabolismo , Autofagia , Encéfalo/patologia , Infarto Cerebral , Humanos , Mutação , Proteína FUS de Ligação a RNA/genética
18.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194828, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643396

RESUMO

In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.


Assuntos
Epigênese Genética , Centro Germinativo , Linfócitos B , Diferenciação Celular , Imunidade Humoral
19.
Front Oncol ; 12: 886101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712519

RESUMO

Objectives: This study aimed to create a nomogram for the risk prediction of neoadjuvant chemoradiotherapy (nCRT) resistance in locally advanced rectal cancer (LARC). Methods: Clinical data in this retrospective study were collected from a total of 135 LARC patients admitted to our hospital from June 2016 to December 2020. After screening by inclusion and exclusion criteria, 62 patients were included in the study. Texture analysis (TA) was performed on T2WI and DWI images. Patients were divided into response group (CR+PR) and no-response group (SD+PD) according to efficacy assessment. Multivariate analysis was performed on clinicopathology, IVIM-DWI and texture parameters for screening of independent predictors. A nomogram was created and model fit and clinical net benefit were assessed. Results: Multivariate analysis of clinicopathology parameters showed that the differentiation and T stage were independent predictors (OR values were 14.516 and 11.589, resp.; P<0.05). Multivariate analysis of IVIM-DWI and texture parameters showed that f value and Rads-score were independent predictors (OR values were 0.855, 2.790, resp.; P<0.05). In this study, clinicopathology together with IVIM-DWI and texture parameters showed the best predictive efficacy (AUC=0.979). The nomogram showed good predictive performance and stability in identifying high-risk LARC patients who are resistant to nCRT (C-index=0.979). Decision curve analyses showed that the nomogram had the best clinical net benefit. Ten-fold cross-validation results showed that the average AUC value was 0.967, and the average C-index was 0.966. Conclusions: The nomogram combining the differentiation, T stage, f value and Rads-score can effectively estimate the risk of nCRT resistance in patients with LARC.

20.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626727

RESUMO

There is growing concern that chemotherapy drugs can damage Leydig cells and inhibit the production of testosterone. Increasing evidence shows that melatonin benefits the reproductive process. This study mainly explores the protective effect and possible molecular mechanism of melatonin regarding cisplatin-induced oxidative stress in testicular tissue and Leydig cells. We found that there were only Leydig and Sertoli cells in the testes of gastrointestinal tumor patients with azoospermia caused by platinum chemotherapeutic drugs. Melatonin (Mel) receptor 1/melatonin receptor 2 (MT1/MT2) was mainly expressed in human and mouse Leydig cells of the testes. We also observed that the melatonin level in the peripheral blood decreased and oxidative stress occurred in mice treated with cisplatin or gastrointestinal tumor patients treated with platinum-based chemotherapeutic drugs. iTRAQ proteomics showed that SIRT1/Nrf2 signaling and MT1 proteins were downregulated in cisplatin-treated mouse testes. The STRING database predicted that MT1 might be able to regulate the SIRT1/Nrf2 signaling pathway. Melatonin reduced oxidative stress and upregulated SIRT1/Nrf2 signaling in cisplatin-treated mouse testes and Leydig cells. Most importantly, after inhibiting MT1/MT2, melatonin could not upregulate SIRT1/Nrf2 signaling in cisplatin-treated Leydig cells. The MT1/MT2 inhibitor aggravated the cisplatin-induced downregulation of SIRT1/Nrf2 signaling and increased the apoptosis of Leydig cells. We believe that melatonin stimulates SIRT1/Nrf2 signaling by activating MT1/MT2 to prevent the cisplatin-induced apoptosis of Leydig cells.


Assuntos
Células Intersticiais do Testículo , Melatonina , Receptores de Melatonina , Testículo , Animais , Humanos , Masculino , Camundongos , Cisplatino/efeitos adversos , Células Intersticiais do Testículo/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1/metabolismo , Testículo/metabolismo , Receptores de Melatonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...